Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Elife ; 102021 08 17.
Article in English | MEDLINE | ID: covidwho-1360882

ABSTRACT

Background: The virus SARS-CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in susceptible hosts that predispose to the development of severe COVID-19. Methods: To identify host proteins that may contribute to the risk of severe COVID-19, we undertook proteome-wide genetic colocalisation tests, and polygenic (pan) and cis-Mendelian randomisation analyses leveraging publicly available protein and COVID-19 datasets. Results: Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nominated new proteins such as soluble Fas (colocalisation probability >0.9, p=1 × 10-4), implicating Fas-mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis-Mendelian randomisation analyses showed consistent associations of genetically predicted ABO protein with several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look-up of proteins associated with the ABO signal revealed that the strongest association was with soluble CD209. We demonstrated experimentally that CD209 directly interacts with the spike protein of SARS-CoV-2, suggesting a mechanism that could explain the ABO association with COVID-19. Conclusions: Our work provides a prioritised list of host targets potentially exploited by SARS-CoV-2 and is a precursor for further research on CD209 and FAS as therapeutically tractable targets for COVID-19. Funding: MAK, JSc, JH, AB, DO, MC, EMM, MG, ID were funded by Open Targets. J.Z. and T.R.G were funded by the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/4). JSh and GJW were funded by the Wellcome Trust Grant 206194. This research was funded in part by the Wellcome Trust [Grant 206194]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.


Individuals who become infected with the virus that causes COVID-19 can experience a wide variety of symptoms. These can range from no symptoms or minor symptoms to severe illness and death. Key demographic factors, such as age, gender and race, are known to affect how susceptible an individual is to infection. However, molecular factors, such as unique gene mutations and gene expression levels can also have a major impact on patient responses by affecting the levels of proteins in the body. Proteins that are too abundant or too scarce may mean the difference between dying from or surviving COVID-19. Identifying the molecular factors in a host that affect how viruses can infect individuals, evade immune defences or trigger severe illness, could provide new ways to treat patients with COVID-19. Such factors are likely to remain constant, even when the virus mutates into new strains. Hence, insights would likely apply across all virus strains, including current strains, such as alpha and delta, and any new strains that may emerge in the future. Using such a 'natural experiment' approach, Karim et al. compared the genetic profiles of over 30,000 COVID-19 patients and a million healthy individuals. Nine proteins were found to have an impact on COVID-19 infection and disease severity. Four proteins were ranked as top priorities for potential treatment targets. One protein, called CD209 (also known as DC-SIGN), is involved in how the virus enters the host cells, and had one of the strongest associations with COVID-19. Two proteins, called IL-6R and FAS, were involved in the immune response and could be responsible for the immune over-activation often seen in severe COVID-19. Finally, one protein, called OAS1, formed part of the body's innate antiviral defence system and appeared to reduce susceptibility to COVID-19. Knowing more about the proteins that influence the severity of COVID-19 opens up new ways to predict, protect and treat patients who may have severe or fatal reactions to infection. Indeed, one of the identified proteins (IL-6R) had already been targeted in recent clinical trials with some encouraging results. Considering CD209 as a potential receptor for the virus could provide another avenue for therapeutics, similar to previously successful approaches to block the virus' known interaction with a receptor protein. Ultimately, this research could supply an entirely new set of treatment options to help combat the COVID-19 pandemic.


Subject(s)
COVID-19/virology , Genome-Wide Association Study , SARS-CoV-2/physiology , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/genetics , COVID-19/immunology , COVID-19/physiopathology , Cell Adhesion Molecules , Humans , Lectins, C-Type , Proteome , Receptors, Cell Surface , Scavenger Receptors, Class A/genetics , Severity of Illness Index , fas Receptor/genetics
2.
Obes Sci Pract ; 7(2): 239-243, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-986356

ABSTRACT

OBJECTIVE: As severity of outcome in COVID-19 is disproportionately higher among individuals with obesity, smokers, patients with hypertension, kidney disease, chronic pulmonary disease, coronary heart disease (CHD), and/or type 2 diabetes (T2D), serum levels of ACE2, the cellular entry point for the coronavirus SARS-CoV-2, were examined in these high-risk groups. METHODS: Associations of ACE2 levels to smokers and patients with hypertension, T2D, obesity, CHD, or COPD were investigated in a single center population-based study of 5457 Icelanders from the Age, Gene/Environment Susceptibility Reykjavík Study (AGES-RS) of the elderly (mean age 75 ± 6 years), using multiple linear regression analysis. RESULTS: Serum levels of ACE2 were higher in smokers and individuals with T2D and/or obesity while they were unaffected in the other patient groups. CONCLUSION: ACE2 levels are higher in some patient groups with comorbidities linked to COVID-19 including obesity and T2D and as such may have an emerging role as a circulating biomarker for severity of outcome in the disease.

SELECTION OF CITATIONS
SEARCH DETAIL